[wp_tech_share]

Though fiber technologies and deployments continue to capture the most attention when it comes to broadband, two technology demonstrations at CableLabs 10 G Showcase provided clear evidence that DOCSIS 4.0 will keep cable operators competitive with their current outside plants. Furthermore, the advancements shown during each of the demonstrations could potentially accelerate the deployment of DOCSIS 4.0 technologies across a wider network footprint than previously thought. Assuming supply chain issues are resolved later this or early next year and lead times for next-generation silicon improve, DOCSIS 4.0 lab testing could move beyond the prototype stage earlier than expected.

Charter and Comcast both took to the stage during the CableLabs event to demonstrate their respective approaches to DOCSIS 4.0. Charter is the biggest proponent of the extended spectrum (ESD) variant of DOCSIS 4.0, whereby the outside plant spectrum is increased to 1.8GHz from today’s 850 MHz to 1 GHz, while Comcast is behind the full-duplex (FDX) variant, which uses 1.2 GHz of the spectrum but allows for the shared use of that spectrum for both downstream and upstream bandwidth.

The deployment of both technologies is predicated on the rollout of distributed access architectures, either remote PHY (R-PHY) or remote-MACPHY (R-MACPHY). Those products are available today, with Comcast already having deployed over 30k R-PHY devices (RPDs) in their network. Charter favors remote MACPHY and demonstrated an R-MACPHY node from Vecima Networks using first-generation silicon from Broadcom, which gives them the ability to provide service to a single service group today, growing to 2 service groups with the second generation chipset that should be ready later this year.

Regardless of the difference in technological and architectural approaches between the two major operators, both demonstrations focused on how the dramatic speed improvements expected with DOCSIS 4.0 could be realized without significant impact on the existing outside plant. In both cases—whether ESD or FDX—operators are going to need to upgrade their outside plant, specifically taps and amplifiers. There is no getting around that. However, if operators can make changes to the individual outside plant elements without having to disrupt the location of those elements and the power required to drive them, then that is a win-win all around.

First, Charter demonstrated speeds of nearly 9 Gbps down and 6 Gbps up using a cascade of 4 amplifiers. The amplifiers had been upgraded with 1.8 GHz modules from Teleste that can be installed in the existing amplifier stations without having to change any of the spacing between those stations. Charter also demonstrated signal levels and MERs (Modulation Error Ratios) all the way to a 2 GHz tap from ATX Networks and a prototype cable modem that are within similar ranges of today’s DOCSIS 3.1 networks. These results are critical in demonstrating that Charter could conceivably achieve near-10Gig speeds without having to go beyond the network changes they are planning to make. Those changes include simple faceplate changes to the taps (which don’t disrupt service) and module swaps at each existing amplifier station.

Eliminating the requirement to pull fiber deeper and alter their existing amplifier cascades further means Charter will reduce its capex spend and increase the speed with which it rolls out DOCSIS 4.0 to subscribers. It also means the operator’s current efforts to move to high-split DOCSIS 3.1 architectures will not be a stranded investment. Instead, those upgrades will simply be a stepping stone to what was shown in their demonstration.

Finally, another interesting element of Charter’s demo was its use of a GAP (Generic Access Platform) node housing for its R-MACPHY device. Charter has been a major proponent of GAP because it helps Charter solve its problem of having dozens of different node housings from several different vendors in their networks. It also gives Charter a modular platform that can be used to deliver DOCSIS 4.0, FTTH, and wireless services. It also incorporates the ability to add edge compute functions. Although the GAP node in the demonstration did include a compute module from Intel, that module wasn’t used in today’s demonstration. Nevertheless, with CableLabs focused on providing “optionality” for its cable operator constituents, the combination of GAP nodes plus the ability to harness edge compute functions so deep in access networks opens a world of service options for Charter.

Comcast followed Charter and demonstrated multiple access network configurations, all supporting production traffic and all being driven by a vCMTS core located in a Comcast headend not too far from CableLabs headquarters in Louisville, CO. Comcast first demonstrated a DOCSIS 3.1 high-split architecture using an RPD and 1.2GHz amps. From the same node, Comcast also demonstrated a 10G EPON OLT. This particular demonstration has direct applicability today, as Comcast is in the midst of an edge-out strategy, expanding its networks from an existing node base or hub site location. In some cases, these edge-outs will be done with fiber; in other cases, they will use coax. In both scenarios, Comcast can leverage the existing vCMTS core for the MAC layer and subscriber management control of both physical media, making it easier to turn up subscribers and achieve ROI.

Comcast’s other demonstration included prototype amplifiers with built-in echo cancellation, allowing them to deliver FDX in a node plus two environments. Up to this point, any FDX deployments at Comcast were in node plus zero environments, where Comcast had pulled fiber into neighborhoods and eliminated amplifier cascades altogether. For the vast majority of cable operators, node + 0 based FDX just hasn’t been justifiable from a capex perspective. The high cost of deep fiber rollouts is what led to the development of extended spectrum DOCSIS and its ability to be delivered over existing amplifier cascades.

But with Comcast proving that FDX can work in a node + 2 environments, using amplifiers with built-in echo cancellation, suddenly the deployment cost comes down considerably for operators. Is it enough of a cost reduction to garner interest among a large enough contingent of MSOs? That remains to be seen.

Potentially the most meaningful development of today’s showcase wasn’t even part of a technical demonstration. Instead, it came when Comcast’s Elad Nafshi said that the operator’s goal is to prove FDX can work in a node + 6 architecture. Comcast has promised to provide more information about the FDX amplifier concept and its performance and use cases later this year. But if Comcast can deliver an FDX amplifier and product set that delivers FDX across existing amplifier cascades, then, similar to Charter’s demonstration of ESD across existing amplifier cascades, the rollout of DOCSIS 4.0 can occur more quickly and less expensively than previously thought.

The net result of both technology demonstrations is that any concerns around the value of upgrading to DOCSIS 4.0 relative to the cost are now taken off the table. Instead, the question now shifts to one of timing. Operators around the world were firmly in the camp of one technology or the other, with all agreeing that some level of fiber would be a major part of any future network upgrade. Now, operators have two similarly-performing technology options in front of them, each requiring upgrading of existing amplifiers, but with two very large questions around timing and availability of key components.

Nevertheless, after today’s demonstrations, the value and relevance of DOCSIS 4.0 just improved significantly. With theoretical speeds matching those offered by today’s XGS-PON technologies, cable operators can easily buy themselves more time and continue to maximize their DOCSIS networks for many years to come.

[wp_tech_share]

With fiber deployments accelerating around the world and with operators seemingly on a daily basis announcing additional fiber expansion projects, there is no question that the competition for broadband subscribers and revenue is intensifying faster than some operators would prefer. Because of that intensification and because of the time and cost required for fiber network deployments, operators are increasingly using a range of technologies for their fiber networks. System vendors have made this easier by adopting combo optics and combo cards that can support a range of technologies, from 2.5G GPON to 25G PON, and potentially beyond. Equipment vendors have heard the call from their operator customers that they need to have every tool available to them to succeed in a highly-competitive environment.

Although operators are, for the most part, still in the early stages of deploying gigabit and multi-gigabit services using XGS-PON, their fiber expansions are opening up additional opportunities for applications and new addressable customers that already require speeds beyond what XGS-PON can provide. For example, large enterprises and campus environments, which have typically been served by point-to-point Ethernet connections, are increasingly being passed by PON ODNs, especially those enterprises that are adjacent to residential neighborhoods.

Though the ITU (International Telecommunication Union) has determined that single channel 50G PON as defined in its G.hsp.50pmd specification is the next generation technology it will move forward with, the increasing use cases for PON combined with those use cases requirements for additional speeds beyond what XGS-PON can provide have opened the door for 25G PON as an important tool in operators’ toolboxes. The current strength in fiber buildouts and the need to address new use cases today has resulted in a list of operators who simply can’t wait for 50G PON to be fully standardized, tested, and productized.

In today’s hypercompetitive broadband market, timing and the availability of the right technology tools are everything. Although 50G PON provides a tremendous theoretical boost in speeds, the timeline for its availability is still an open question. China Mobile is on the record saying that it will begin limited deployments of 50G PON beginning in 2023. However, the CAICT (China Academy of Information and Communications Technology) has stated that it believes mass-market deployments of 50G PON won’t occur until the second half of this decade. With XG-PON deployments just hitting their stride as of last year and a typical deployment cycle of around 5-7 years for each new technology, the CAICT’s estimate seems to be more realistic. Even if we split the difference, the market is still looking at 2025 as the earliest point at which 50G PON sees meaningful deployments for residential applications.

One of the biggest challenges to overcome for all 50G PON component suppliers and equipment vendors is the increased optical power budget required. Additionally, the proposed integration of DSPs (Digital Signal Processors) is a significant change, as they have not been required in PON technologies before. Incorporating DSPs theoretically allows for the use of lower-cost 25G optics, which are widely available and mature. DSPs allow for the support of both OOK (On-Off keying) and OFDMA (Orthogonal Frequency Division Multiple Access). This support is critical for operators as it allows them to re-use their existing ODN (Optical Distribution Network) and not have to make significant and costly changes that could impact thousands of subscribers.

DSP-enhanced PON technologies are already being put through their paces, with China Mobile having demonstrated transmission rates of 41G downstream and 16G upstream in a hybrid environment using a 50G PON ONT as well as a 10G PON ONT. Meanwhile, Nokia has demonstrated 100G PON in conjunction with Vodafone at a lab in Germany. Both trials occurred in 2021 and more proof-of-concept work is expected throughout this year.

This brings us back to 25G PON. Although the traditional method of developing a technology for wide-scale deployment is to work through one of the primary standards bodies (ITU and IEEE), that avenue was closed to Nokia and other component suppliers and service providers who were interested in seeing both 25G PON and 50G PON standardized through the ITU, as well as accelerating the availability of 25G PON technologies to bridge the gap between today’s 10G technologies and tomorrow’s 50G and 100G options. So, the collection of vendors and operators organized the 25GS-PON MSA (Multi-Source Agreement) to develop standards, define interoperability, and generally help to evolve the technology outside the traditional standards organizations. The group’s members include AT&T, Chorus, Chunghwa Telecom, Cox Communications, NBN, Opticomm, and Proximus—service providers with the collective buying power to make the R&D effort worthwhile for the growing list of component and equipment vendors who are also members.

CableLabs, which focuses on developing standards and technologies on behalf of its cable operator members, is also a member of the MSA. Just like their telco counterparts, cable operators are trying to determine their bandwidth requirements in residential networks over the next few years, so having a choice among technology options is important. But unlike telcos, cable operators also have to determine whether they will satisfy these future bandwidth requirements with DOCSIS 4.0 and their existing coax plant or whether they will do so with fiber. In both cases, 25G PON is being examined as both a residential technology beyond current 10G DPoE (DOCSIS Provisioning over EPON) options and also as a potential aggregation technology for both remote PHY and remote MACPHY nodes.

CableLabs is also working on its own initiatives, including single wavelength 100G Coherent PON, which is seen as an ideal long-term option for cable operators who have wide ranges of fiber span lengths (up to 80km) and need spit ratio sizes that are more akin to today’s service group sizes of 200-500 homes passed per node. Nevertheless, the timeline for 100G Coherent PON, like 50G PON, is still being determined.

 

Expanding use cases for PON driving the need for 25G

Beyond the uncertain timing of 50G PON, as well as the desire for technology choice, one of the primary reasons for the short-term demand for 25G PON is simply the desire to use PON in applications that go well beyond traditional residential broadband access. It is actually in these applications where 25G PON will see the most deployments, particularly within the next 2-3 years.

Enterprise services have typically been point-to-point Ethernet connections. But as operators expand their PON ODNs to support residential and small-medium business applications, 25G PON can be implemented to deliver symmetric 10G connections, comparable or better than what enterprises are accustomed to. Because 25G PON has been designed to co-exist with both GPON and XGS-PON, service providers can have the flexibility of using the same OLT to deliver both high- and low-SLA traffic or they can split that traffic and customer base across multiple OLTs. Either way, the existing ODN remains intact.

Additionally, service providers are also interested in 25G PON their 5G transport networks, particularly in the case of small cell transport. Though LTE networks never resulted in the type of volume deployments of PON equipment to support backhaul, there is more consensus that the PON technology options available now provide the bandwidth (symmetric 10G) along with the latency requirements necessary to support 5G services and corresponding SLAs.

 

Clear Upgrade Path

Though standards bodies have traditionally defined which technologies get adopted and when there are certainly cases where operators have placed their thumbs on the scales in favor of a preferred option. These choices don’t generally go against what the standards bodies recommend or are working towards. Instead, they satisfy a more immediate internal requirement that doesn’t mesh with the proposed standardization, certification, and product availability timeline defined by the standards bodies and participating equipment suppliers.

Larger operators, including AT&T, BT Openreach, Comcast, and Deutsche Telekom, have also become far more comfortable over the last few years defining standards and pushing them through other industry organizations, such as ONF and the Broadband Forum. These operators know they have the scale and market potential to drive standards and thereby influence the product roadmaps of their incumbent equipment suppliers. There are always others waiting in the wings or the threat of moving to completely virtualized, white box solutions that would reduce the revenue opportunity for said vendors.

And that’s what appears to be happening with 25G PON. Service providers that are part of the MSA are certainly voting with their pocketbooks. Nokia, for its part, has made things quite simple for these operators: Use GPON and XGS-PON today for the bulk of your residential FTTH deployments, and then add in 25G PON using the same equipment and ODN where it makes strategic sense. Nokia does indeed seem to be seeding the market, has reported a cumulative total of 200k 25G-Ready PON OLT ports through 3Q21, with a bigger jump expected in the fourth quarter.

Nokia realizes it must make hay now while the timeline around 50G PON remains in flux and demonstrations of its performance in labs remain limited.

But the PON market has always been one offering different technology options to suit each operator’s unique use case requirements and competitive dynamics. That flexibility is proving to be particularly beneficial in today’s hypercompetitive broadband environment, in which each operator might have a different starting point when it comes to fiber deployments, but likely has similar goals when it comes to subscriber acquisition and revenue generation. In this environment, many operators have clearly said that they simply can’t wait on a promising technology when they need to establish their market presence today. And so, the vendor ecosystem has responded again with options that can steer them down a path to success.

[wp_tech_share]

 

Data centers are the backbone of our digital lives, enabling the real-time processing of and aggregation of data and transactions, as well as the seamless delivery of applications to both enterprises and their end customers. Data centers have been able to grow to support ever-increasing volumes of data and transaction processing thanks in large part to software-based automation and virtualization, allowing enterprises and hyperscalers alike to adapt quickly to changing workload volumes as well as physical infrastructure limitations.

Despite their phenomenal growth and innovation, the principles of which are being integrated into service provider networks, data centers of all sizes are about to undergo a significant expansion as they are tasked with processing blockchain, bitcoin, IoT, gigabit broadband, and 5G workloads. In our latest forecast, published earlier this month, we expect worldwide data center capex to reach $350 B by 2026, representing a five-year projected growth rate of 10%. We also forecast hyperscale cloud providers to double their data center spending over the next five years.

Additionally, enterprises are all becoming smarter about how to balance and incorporate their private clouds, public clouds, and on-premises clouds for the most optimal and efficient processing of workloads and application requests. Similar to highly-resilient service provider networks, enterprises are realizing that the distribution of workload processing allows them to scale faster with more redundancy. Despite the general trend towards migrating to the cloud, enterprises will continue to invest in on-premises infrastructure to handle workloads that involve sensitive data, as well as those applications that are very latency-sensitive.

As application requests, change orders, equipment configuration changes, and other general troubleshooting and maintenance requests continue to increase, anticipating and managing the necessary changes in multi-cloud environments becomes exceedingly difficult. Throw in the need to quickly identify and troubleshoot network faults at the physical layer and you have a recipe for a maintenance nightmare and, more importantly, substantial revenue loss due to the cascading impact of fragmented networks that are only peripherally integrated.

Although automation and machine learning tools have been available for some time, they are often designed to automate application delivery within one of the multiple cloud environments, not across multiple clouds and multiple network layers. Automating IT processes across both physical and virtual environments and across the underlying network infrastructure, compute and storage resources have been a challenge for some time. Each layer has its own distinct set of issues and requirements.

New network rollouts or service changes resulting in network configuration changes are typically very labor-intensive and frequently yield faults in the early stages of deployment that require significant man-hours of labor.

Similarly, configuration changes sometimes result in redundant or mismatched operations due to the manual entry of these changes. Without a holistic approach to automation, there is no way to verify or prevent the introduction of conflicting network configurations.

Finally—and this is just as true of service provider networks as it is of large enterprises and hyperscale cloud providers—detecting network faults is often a time-consuming process, principally because network faults are often handled passively until they are located and resolved manually. Traditional alarm reporting followed by manual troubleshooting must give way to proactive and automatic network monitoring that quickly detects network faults and uses machine learning to rectify them without any manual intervention whatsoever.

 

Automating a Data Center’s Full Life Cycle

As the size and complexity of data centers continue to increase and as workload and application changes increase, the impact on the underlying network infrastructure can be difficult to predict. Various organizations both within and outside the enterprise have different requirements that all must somehow be funneled into a common platform to prevent conflicting changes to the application delivery layer all the way to the network infrastructure. These organizations can also have drastically different timeframes for the expected completion of changes largely due to siloed management of different portions of the data center, as well as different diagnostic and troubleshooting tools in use by the network operations team and the IT infrastructure teams.

In addition to pushing on their equipment vendor and systems integrator partners to deliver platforms that solve these challenges, large enterprises also want platforms that give them the ability to automate the entire lifecycle of their networks. These platforms use AI and machine learning to build a thorough and evolving view of underlying network infrastructure to allow enterprises to:

    • Support automatic network planning and capacity upgrades by modeling how the addition of workloads will impact current and future server requirements as well as the need to add switching and routing capacity to support application delivery.
    • Implement network changes automatically, reducing the need for manual intervention and thereby reducing the possibility of errors.
    • Constantly provide detailed network monitoring at all layers and provide proactive fault location, detection, and resolution while limiting manual intervention.
    • Simplify the service and application provisioning process by providing a common interface that then translates requests into desired network changes.

Ultimately, one of the key goals of these platforms is to create a closed-loop between network management, control, and analysis capabilities so that changes in the upper-layer services and applications can drive defined changes in the underlying network infrastructure automatically. In order for this to become a reality in increasingly complex data center network environments, these platforms must provide some critical functions, including:

    • Providing a unified data model and data lakes across multiple cloud environments and multi-vendor ecosystems
      • This function has been a long-standing goal of large enterprises and telecommunications service providers for years. Ending the swivel-chair approach to network management and delivering error-free network changes with minimal manual intervention are key functions of any data center automation platform.
    • Service orchestration across multiple, complex service flows
      • This function has also been highly sought-after by large enterprises and service providers alike. For service providers, SDN overlays were intended to add in these functions and capabilities into their networks. Deployments have yielded mixed, but generally favorable results. Nevertheless, the principles of SDN continue to proliferate into other areas of the network, largely due to the desire to streamline and automate the service provisioning process. The same can be said for large enterprises and data center providers.

Although these platforms are intended to serve as a common interface across multiple business units and network layers, their design, and deployment can be modular and gradual. If a large enterprise wants to migrate to a more automated model, it can do so at a pace that is suited to the organization’s needs. The introduction of automation can be done first at the network infrastructure layer and then introduced to the application layer. Over time, with AI and machine learning tools aggregating performance data across both network layers, correlations between application delivery changes and their impact on network infrastructure can be determined more quickly. Ultimately, service and network lifecycle management can be simplified and expanded to cover hybrid cloud or multi-vendor environments.

We believe that these holistic platforms that bridge the worlds of telecommunications service providers and large enterprise data centers will play a key role in helping automate data center application delivery by providing a common window into the application delivery network as well as the underlying network infrastructure. The result will be the more efficient use of network resources, a reduction in the time required to make manual configuration changes to the network, a reduction in the programming load for IT departments, and strict compliance with SLA guarantee to key end customers and application provider partners.

[wp_tech_share]

 

Broadband Focus Will be Squarely on Fiber and Increased Competition in 2022

The emphasis on and investments in advanced broadband access networks around the world over the last two years shows no signs of abating in 2022. Despite the headwinds of component and labor shortages, inflation, and logistics snafus, broadband network buildouts and upgrades, coupled with net subscriber additions are projected to result in over $15.5 B in equipment spending in 2021. With the sustained influx of new capital from both governments and private equity, 2022 spending should be equally strong.

The 2021 results were somewhat of a surprise to some, as there were expectations that students returning to in-person instruction and workers partially or fully returning to their offices would result in a reduction in home broadband subscriptions that had been added in 2020 at the height of the pandemic. But, net subscriber additions didn’t decline and in fact accelerated throughout 2021. For those of us who have monitored the broadband market for some time, this wasn’t a surprise, as broadband remains one of the stickiest services a provider can offer. Though there is churn, as there is with many services, once broadband is in the home, it more than likely will remain and be integrated into the household budget.

As a result, investments in broadband infrastructure—specifically fiber networks—have skyrocketed, with private equity fueling a growing number of buildouts in North America and Europe. Investing in network infrastructure—which hasn’t been cool since the late 90’s—is suddenly all the rage. As such, the valuations of fiber networks have increased significantly, driven by increased demand for residential broadband, ongoing 5G network buildouts, and an expectation that fiber networks still need hundreds of billions in new investments to keep pace with expected bandwidth demand.

Of course, national Government plans including the RDOF (Rural Digital Opportunity Fund) and Build Back Better programs, as well as tax incentives in the UK and other European countries, intend to cover some of that necessary investment. But that hasn’t pushed private investment to the sidelines. All of this means that 2022—even 2023—should be very strong years for broadband equipment manufacturers.

 

Changes in the Competitive Landscape Will Force Cable Operators to Move Faster

Before discussing the expected impacts on specific broadband technologies and products, it’s critical to look at how sustained investments in fiber and even fixed wireless networks will dramatically alter the competitive landscape in broadband. The biggest change to the overall market that these investments provide is not only availability where it didn’t exist before, especially in the case of rural and underserved markets, but also the introduction of choice where that didn’t really exist before. In North America and a number of Western European countries, realistic consumer choice among multiple broadband service providers has only recently begun to increase. In most areas, the choice has been between cable and DSL, with cable operators able to offer speeds that satisfy increased subscriber requirements, while DSL languishes at sub-50 Mbps speeds. The net result—especially in the US market—was broadband market dominance to the tune of over 65%.

That dominance has certainly benefited cable operators and kept their subscriber base and margins growing in the face of sustained pay-TV service cancellations. But in some cases, it has also not prepared them adequately for the significant changes that are headed their way in the form of new fiber-based competitors. Some cable operator executives have been downright dismissive of the looming threats—especially those coming from fixed wireless.

Tom Rutledge, CEO of Charter Communications, said back in September 2021 that, “We actually look forward to a higher churn environment…We do well with prospects looking to change their services.” In a world where Charter was competing only with DSL providers, the company clearly did well and has continued to excel in pulling away dissatisfied DSL subscribers who required more speed but couldn’t get it, especially during the pandemic.

But going up against fiber providers with consistent gigabit (and even multi-gigabit speeds) is an entirely different story altogether, one in which the MSOs could find themselves in a similar position to previous DSL providers. We have already seen a slowdown in net new broadband subscribers among some of the largest US cable operators. That slowdown has been attributed to (among other things) an expected decline in subscriber churn from DSL providers largely because there are so few left to poach.

But with AT&T, Verizon, Frontier, Ting, Sonic, and other providers posting increasing fiber subscriber additions, at least some of the subscriber slowdown at Charter and others has to be attributed to these subscriber gains being made at the cable operators’ expense. So much for being successful in high-churn environments.

In this new battle, cable operators are also saddled with the consumer perception that they are not providing value even if they are providing the fastest speeds available in a particular area. Part of this perception is due to the longstanding residue of consumers consistently ranking their cable providers at the bottom of the list for value and customer service. It’s one reason why people have dropped (and continue to drop) their pay-TV subscriptions so quickly. Again, so much for being successful in high-churn environments.

So, what does this mean for cable operators, from the perspective of infrastructure investments and technology rollouts? There are a couple of implications:

  1. There will be a growing percentage of tier 1 cable operators who increase their investments in fiber infrastructure. We have already seen a decent number of tier 2 and tier 3 operators in North America opt for the complete replacement of their HFC networks with full fiber. While we certainly don’t expect to see a wholesale cutover among any tier 1 cable operators, we believe this year will see an increase in fiber overbuilding in some of the more competitive markets in order to maintain the perception of parity with fiber competitors.
  2. Tier 1 operators will push very hard to accelerate the DOCSIS 4.0 product availability timeline. We are already seeing hints of this with system vendors pursuing silicon partnerships outside of Broadcom in order to expedite the availability of products, particularly remote-MACPHY devices. We are also already seeing announcements of successful lab trials using both full-duplex DOCSIS and extended-spectrum DOCSIS to deliver multi-gigabit speeds.

In the short term, we fully expect cable operators to continue their current mid- and high-split upgrade projects to increase upstream bandwidth for their DOCSIS 3.1 networks. This will result in sustained DOCSIS channel license purchases through at least the first half of the year and perhaps throughout the year, with a growing percentage of those licenses being supported on vCCAP platforms in support of R-PHY deployments, as well as on R-MACPHY devices.

Speaking of R-MACPHY, the availability of products that adhere to the Flexible MAC Architecture (FMA) specification will accelerate this year, with MAC Manager products moving from the lab to field trials later this year. The availability of these products, while not an absolute requirement for DOCSIS 4.0, are important stepping stones in continuing the further disaggregation of the I-CCAP and vCCAP platforms, which is viewed as an important precursor for many cable operators as they begin their journey to DOCSIS 4.0, either in the form of Extended Spectrum DOCSIS or Full-Duplex DOCSIS. Additionally, some MSOs view FMA as a way to open the door to more fiber deployments, as remote OLTs and ONTs can be managed similarly to cable modems.

Within the home, cable operators are going to move quickly to expand the availability of high-end residential gateways that include both Wi-Fi 6 and, in the US Wi-Fi 6e. Comcast recently announced a new Wi-Fi 6e gateway manufactured by Technicolor that will be reserved initially for those customers taking its gigabit service offering. Comcast’s positioning with the gateway is that it offers the fastest speeds to and within the home. Fiber doesn’t make any difference if the W-iFi gateway in the home is anything less than Wi-Fi 6 or Wi-Fi 6e.

 

Fiber Expansion Will Accelerate

The switch from copper to fiber among the world’s largest telcos really became clear in 2020 and 2021. That trend will accelerate in 2022, in particular, because of the investments made this year in new optical line terminal (OLT) ports. Operators throughout North America, EMEA, and CALA switched more of their capex towards expanding their fiber networks than sustaining their DSL networks. This was clear at Telmex, BT OpenReach, and others. Major projects at Deutsche Telekom, Orange, Proximus, and elsewhere will drive not only more fiber expansion but 10 Gbps deployments using XGS-PON.

Fiber access networks have reached a major tipping point, driven by the simultaneous catalysts of the shift to next-generation fiber technology and the shift to openness, disaggregation, and automation. The world’s largest broadband providers are quickly realizing that the need for increased throughput is matched by the need for a highly-scalable network that can respond quickly to the changing requirements of the service provider, their subscribers, and their vendor and application partners. The need to provision and deliver new services in a matter of hours, as opposed to weeks or months, holds just as much priority as the ability to deliver up to 10 Gbps of PON capacity. Although service providers might have completely different business drivers for the move to open, programmable networks, there is no question that the combination of data center architectural principles and 10G PON technology is fueling a forthcoming wave of next-generation fiber networks upgrades.

The service providers that adopt the combination of 10 Gbps PON and openness will be best prepared to accomplish three major goals:

  1. Deliver the advanced, 10 Gbps capacity, and multi-gigabit services subscribers will expect and require using a cloud-native infrastructure that treats bandwidth and the delivered applications as workflows.
  2. Anticipate and whether rapid increases in traffic demand with a highly-targeted and elastic infrastructure that can be activated without a forklift upgrade.
  3. Develop an access network infrastructure that can process multiple workloads beyond broadband access, including hosted services that can be offered on a wholesale basis, as well as fixed-mobile convergence applications.
[wp_tech_share]

According to many operators around the world with cable, DSL, and fibre broadband networks, upstream peak traffic growth throughout 2020 increased more than 50 percent, while downstream peak traffic growth increased 30 percent… Although the world is gradually returning to normal, with teleworkers moving slowly back into their offices, there is simply no turning back now for broadband subscribers who either upgraded or switched to an FTTH service.