[wp_tech_share]

 

Dell’Oro Group published an update to the Broadband Access and Home Networking 5-Year Forecast report in July 2021

Continued Subscriber Growth and Bandwidth Consumption Remain Key Catalysts

Global spending on broadband access equipment and CPE is expected to have a 3% CAGR from 2020-2025, which is a solid increase from a 0% CAGR in our January 2021 5-Year forecast edition. The combination of continued residential subscriber growth and increased capacity utilization rates noted by global broadband providers will more than offset the negative impacts of component shortages and labor limitations.

Broadband subscriber additions continue to grow at a furious pace around the world, as the Delta variant continues to limit the return of employees to their offices and has extended hybrid learning environments for students. Even if subscriber growth does slow later this year, broadband penetration rates and the total addressable market for broadband service providers have expanded significantly over the last year. Subscriber growth has also resulted in improved revenue and gross margins for service providers. As a result, providers are pulling forward some of their upgrade projects, including those involving the transition from copper to fiber.

The spending slump we had expected to see in 2021 after the increased investment levels of 2020 is not going to materialize. In fact, spending will continue to grow this year as operators deal with continued subscribers additions, as well as competitors increasing their investments in fiber, HFC, and fixed wireless networks.

PON Equipment Spending Expected to Remain Solid

Our five-year CAGR for PON equipment has been increased yet again to 5% from 3%. China, which has historically accounted for anywhere from 65-80% of total PON spending, has peaked in terms of total ONT units consumed on an annual basis. The Chinese FTTH market has matured, with broadband penetration in the country reportedly nearing 80%. Though subscriber growth is slowing, there is still a tremendous installed base of subscribers that will continue to require new ONTs.

Although China’s ONT volumes are coming down from the peak years of 2017 and 2018, additional growth is expected from the rest of the world—particularly North America and Western Europe. In North America, the FCC’s $20B RDOF (Rural Digital Opportunity Fund) program will help transition a significant number of rural areas to fiber over the next 5-7 years. In Western Europe, major operators including Orange, DT, BT OpenReach, and Proximus are all expanding their fiber rollouts and even moving quickly to XGS-PON for symmetric 10 G services.

Finally, in Asia, India, Indonesia, and Malaysia, along with a 10 G upgrade cycle in Japan and South Korea should also help sustain the market.

Cable Infrastructure Spending Set for Growth

The glut of DOCSIS channel capacity that helped push down cable equipment revenue in 2018 and 2019 was actually beneficial to operators in 2020 as they were able to address significant increases in both upstream and downstream traffic during the pandemic with minimal increases in spending. In most cases, cable operators used the software tools available as part of DOCSIS 3.1 to ensure adequate bandwidth for all subscribers. In other cases, operators purchased additional DOCSIS licenses as part of accelerated node split programs to address systems with the greatest need.

Regardless, after two years of under-investing in infrastructure, the overall cable infrastructure market will see a steady increase in revenue throughout our forecast period, as mid- and high-split projects in North America and Western Europe, designed to increase upstream capacity, are accelerated. Investments in outside plant equipment, particularly new amplifiers and taps, will also continue as operators begin the multi-year process of preparing their networks for DOCSIS 4.0 and its ability to enable extended-spectrum DOCSIS (ESD), low-latency DOCSIS, and full-duplex DOCSIS (FDD).

About the Report

The Dell’Oro Group Broadband Access and Home Networking 5-Year Forecast Report provides a complete overview of the Broadband Access market with tables covering manufacturers’ revenue, average selling prices, and port/unit shipments for Cable, DSL, and PON equipment. Covered equipment includes Converged Cable Access Platforms (CCAP), Distributed Access Architectures (DAA), DSL Access Multiplexers (DSLAMs), PON Optical Line Terminals (OLTs), Customer Premises Equipment ([CPE] for Cable, DSL, and PON), along with SOHO WLAN Equipment, including Mesh Routers. For more information about the report, please contact dgsales@delloro.com.

[wp_tech_share]

Back in September 2020, CableLabs released the specifications for Flexible MAC Architecture (FMA). FMA defines the disaggregation of the CCAP into separate management, control, and data planes. Essentially, it is the next step in the evolution that was started years ago with M-CMTS architectures, followed by the move to DAA and Remote PHY, specifically. FMA expands the disaggregation of a traditional integrated CCAP platform into a combination of DAA, SDN, and NFV.

More importantly, it gives cable operators the flexibility they desperately need as they navigate how to prioritize current capacity upgrades through traditional node splits, mid-and high-splits, upcoming outside plant upgrades to 1.2Ghz and 1.8GHz, as well as determining whether their future access network relies on DOCSIS 4.0, fiber-to-the-home, or a combination of the two. FMA gives cable operators the flexibility to deliver Low Latency DOCSIS (LLD) as well as Mobile xHaul over DOCSIS, as well as far more flexibility in how they architect their CIN (Converged Interconnect Networks) with external switching elements that give them the ability to scale their interconnect networks more easily than ever before.

Finally, FMA opens the door to the true virtualization of cable access networks, supporting any number of use cases and any number of physical layer connections through the same disaggregated network functions, which can be placed in any physical location—node, hub site, headend, super headend, or data center. When cable operators faced a significant ramp in upstream bandwidth consumption in the early weeks of the COVID-19 pandemic, some had a difficult time being able to support that growth without the traditional tools of node splitting and increasing DOCSIS channels through the addition of CCAP line cards or new CCAP chassis in instances where current CCAP platforms are already maxed out. With FMA, operators have the ability to scale far more quickly, adding CPU cycles quickly to match the increase in service groups and bandwidth.

 

Vendor Interoperability a Key Tenet

The disaggregation of the traditional CCAP into multiple, discrete network functions allows for cable operators to mix and match those functions supplied by different vendors—similar to Open RAN architectures for mobile networks. For example, one vendor can provide the MAC manager function, another can provide the PacketCable aggregator, while multiple vendors can supply RPDs, RMDs, and OLTs. Again, the idea is to provide an evolution of the current generation of virtual CCAP platforms, completely disaggregated to match the operator’s use cases, business case, and overall architectural goals.

Vendors who have been providing virtual CCAP solutions to the market would appear to have a leg up on their competition, having gone through the paces of real-world deployments with all their challenges and variables. The disaggregated CCAP envisioned by the FMA specification clearly requires more than just taking existing CCAP software and porting it onto individual servers. It requires further disaggregation into discrete functions, such as a MAC manager, DOCSIS controller, video core, and out-of-band (OOB) controller. That effort takes time and a thorough understanding of docker containers, Kubernetes, and other microservice technologies and standards.

The focus on disaggregation also opens the door to new vendors and new approaches to architecting cable access and back-end management networks, just as remote PHY and remote MACPHY architectures did. For example, the video-core function could be handled by traditional CCAP vendors, or it could become a spin-off product for those suppliers focused on middleware, conditional access (CA), or video processing platforms. Video processing itself has become a largely software-based market. Whether a cable operator continues to deliver QAM-based broadcast video or shifts their focus to IP-based multicast video, the need for a flexible video core as part of FMA is critical.

Of course, the biggest question when it comes to disaggregated, virtualized implementations of core network functions is just how much vendor diversity operators are comfortable with. As data center technologies and principles have permeated telco networks, there has been a lot of open discussion about how vendor diversity benefits operators in areas such as supply-chain redundancy, release cycle acceleration, and, of course, lower prices due to more competitive bidding. But the reality has been a bit more conservative, with operators selecting specific areas of their network (metro edge) or platforms (BNG) to open up, rather than more wholesale changes. That is completely understandable, given the decades-long reliance on specific vendor and technology partnerships operators have had.

Cable operators tend to take conservative approaches to technology upgrades in an effort to avoid massive capex outlays that might disrupt the present mode of operation. And this approach, for the most part, has been incredibly successful—especially when it comes to broadband. But with their primary competitors finally making a wholesale shift away from copper and towards fiber, there is justifiable concern that the conservative approach might leave them at a competitive disadvantage that moderate upgrades to HFC just can’t overcome.

Thus, the timing of the FMA specification and its focus on disaggregation of core access network platforms into discrete VNFs along with the emphasis on supporting multiple physical layer technologies (HFC, PON, wireless, etc.) couldn’t be better.

 

Hyperscaler Partnerships

Beyond an increase in the vendor ecosystem, the other possible by-product of FMA is a move by hyperscalers to partner with cable operators by either hosting elements of their FMA architectures in the public cloud or offering a completely hosted solution for operators who might be looking to outsource that portion of their network.

Hyperscalers are extremely adept and efficient at providing low-cost workloads and CPU cycles. They have proven their ability to do so with hosted video processing functions for OTT providers and broadcasters. So, why not attempt to do so with broadband services on platforms that are disaggregated and virtualized?

Of course, there is no evidence that any cable operator is actively seeking this type of solution or partnership. And it remains to be seen whether any operator would even consider outsourcing any portion of what has become their most important and profitable service.

Yet, cable operators also have a significant investment cycle ahead of them—whether it’s DOCSIS 4.0 or FTTH. Additionally, many of the larger operators continue down the path of consolidating their headends to reduce their real estate footprint and costs, as well as their operational costs. Offloading workloads to a hyperscaler partner could help them expedite additional headend consolidation efforts and further reduce operational costs.

Whether cable operators pursue these partnerships or not and whether they pursue true, multi-service access networks, the technology underlying these possibilities is FMA. As the FMA standard evolves and as vendors and operators begin to introduce products into their networks, it will be interesting to watch the new use cases—and possible partnerships—that develop.

[wp_tech_share]

Back in April, I wrote about the widening gap between the demand for new FTTH network buildouts and connections and the ability of equipment vendors to supply those network buildouts as well as the ability for network operators to find the necessary labor to complete those buildouts.

This discrepancy between supply and demand is in danger of increasing further based on pending and proposed funding and subsidization initiatives, which could total up to $16B in 2022, then gradually declining to $12B in 2025 as programs are phased out.

Adding more fuel to the fire has been the announcements in recent weeks by operators making strategic decisions to prioritize the expansion of their FTTH network buildouts to pass more homes in a shorter amount of time. In just the last three weeks, here is a quick summary of public announcements made by operators all planning to expand the reach of their fiber broadband services:

  • AT&T announced that it was planning to more than double its fiber footprint to 30 million customer locations by the end of 2025 after it spun off its WarnerMedia unit in a combination with Discovery.
  • Alaska’s GCI Communications announced that it will deliver 2Gig speeds to 77% of Alaskans in 2022 and that it will also provide 10Gig speeds in the next five years.
  • TDS Telecom detailed plans to add more than 300k fiber locations by 2024, with 150k of those coming in 2021 alone
  • Windstream revealed its plan to hire 1,000 new workers beginning in the fourth quarter of 2021 to support its five-year, $2B fiber expansion project, which would expand gigabit fiber services to 2 million locations by 2025.

These announcements follow others made in 2020, including Consolidated Communications detailing its plan to add 1.6 million new fiber passings in five years, with 300k of those being added in 2021.

Of course, these public announcements are a mere sampling of the substantial investments being made in FTTH network expansions throughout the United States both in 2021 and throughout the next five years. RDOF (Rural Digital Opportunity Fund), CARES (Coronavirus Aid Relief and Economic Security Act) and ARPA (American Rescue Plan Act) funds will go to further subsidize additional fiber projects in rural and underserved areas, as state legislatures prioritize the expansion of fiber broadband in the wake of the COVID-19 pandemic which highlighted the absolute for connectivity throughout their communities.

The concern for operators now suddenly ready to ditch their aging copper infrastructure and finally compete with cable operators who now hold a near-monopoly on fixed broadband subscribers is that supply chain and labor shortages will extend their fiber buildouts well beyond their announced target dates. Already, we are hearing anecdotally about the difficulty in hiring skilled workers in the fields of professional services and installation, as well as growing lead times for fiber, conduit, and ONTs. Also, equipment vendor backlogs are increasing at a rapid clip, as the gap between customer orders and finished goods they can ship for revenue widens.

The net result is that many of these fiber projects will take considerably longer to complete than the five-year deadlines the operators have set for themselves. Given some of the latest signals on inflation in the US, that might not be such a bad thing. Infrastructure projects such as these tend to ensure a sustained source of job creation over the course of multiple years, as opposed to a direct stimulus investment.

Even if project completion dates are pushed out due to supply chain and labor shortages, one possible outcome of this extensive and sustained fiber push is a similar switch to more fiber deployments by US cable operators. Though the larger operators have already signaled their intention to continue using HFC DOCSIS as their primary residential technology, with DOCSIS 4.0 as the next step that will get them to near-symmetric, multi-gigabit speeds, other smaller operators are moving more towards fiber. These operators talk about the fact that moving to a passive architecture in the outside plant and away from powered amplifiers helps them from an opex perspective.

DOCSIS 4.0 already represents a fork in the road, with operators having a choice between Extended Spectrum DOCSIS and Full-Duplex DOCSIS. But, if the competition from fiber providers ramps up faster than the availability of DOCSIS 4.0 equipment, there could be another fork in the road for multi-system operators (MSOs): A future based on DOCSIS or one on fiber. We have heard anecdotally that, where fiber providers have entered a broadband market previously dominated by a cable operator and have successfully stolen away a high percentage of broadband customers, the MSO has been forced to quickly do a node split to boost speeds. That will work in some systems and with certain subscriber bases, but it will fall short, especially when service is marketed as “True Fiber” and the other as just “Fiber-Like.”

[wp_tech_share]

FTTH Deployments Could be Slowed By Supply Chain Issues

“If you build it, they will come” has been the guiding mantra for network operators for decades now, especially when it comes to their broadband access networks, which have seen accelerated subscriber growth over the last year and consistently contribute margins ranging from 55-70%.

 

As I recently pointed out in another blog, the global trend for building out new broadband networks is to do so with fiber, as the importance of premium residential broadband connections was made abundantly clear during the lockdowns of the COVID-19 pandemic.

The emphasis on fiber broadband shows no signs of slowing

Building networks and doing so with fiber has made the path clearer for operators and regulators alike. Twin national goals of bridging the digital divide and getting all citizens connected along with the desire to provide gigabit speeds to everyone have merged and are driving a renewed cycle of subsidization and investment in broadband access networks and equipment, especially in the US.

In the US, the aggregate amount of loans, grants, and other subsidies that has already been approved to connect rural, unserved and underserved communities will nearly double current subsidy levels to over $8B per year. These funds include the $9.23B approved through phase 1 of the RDOF (Rural Digital Opportunity Fund) auction, $125M through the $2.2T CARES (Coronavirus Aid Relief and Economic Security Act) legislation passed in March, 2020, a potential $7.5B through the CAA (Consolidated Appropriations Act) passed in December 2020, as well as additional funds eligible for broadband projects through the ARPA (American Rescue Plan Act) passed in March 2021.

 

Government subsidies to expand fiber connectivity, particularly in the US, will reach historical heights soon

These funds don’t even include proposed legislation which includes $15B in the American Broadband Buildout Act, $94B in the AAIA (Accessible, Affordable Internet for All Act), $109B in the LIFT (Leading Infrastructure for Tomorrow’s America Act), and $100B in the American Jobs Plan.

Combined, the amount of money available via legislation that has already been passed along with proposed legislation could push total subsidies available for broadband network buildouts to over $16B in 2022, declining gradually to $12B in 2025 as programs are phased out. That represents a 4x increase in the amount of money intended to bridge the digital divide and connect millions of American homes with reliable broadband Internet.

Of course, these projects aren’t going to be completed overnight. In fact, recent history with the American Recovery and Reinvestment Act of 2009, which earmarked $7.2B for broadband expansion and improvement, as well as the Connect America Fund (CAF and CAF II), shows that these projects, from approval to funding to deployment can take years. Many of the programs (RDOF is one) allocate money over the course of 10 years.

We can debate the vehicles for funding the rollout and expansion of broadband networks, but we can’t debate the merits. There is no question that there is a significant percentage of the US household population that remains unserved (roughly 22-25M homes) along with a millions more homes that are classified as underserved. Combined, those households could range from 35M-40M. If we assume that operators add roughly 2.7-3.2M new broadband subscribers annually, then the 10-year timeline to connect everyone and provide respectable broadband speeds and service seems particularly aggressive.

 

Though there is clear demand, shortages in components and labor will delay the full achievement of connectivity goals

Despite all the funding options and demand from network operators, equipment suppliers, and subscribers alike, the bigger problem in the short-term isn’t one of demand, but of supply. Instead of “if you build it, they will come” supply chain and labor market constraints might prevent operators from building it in the first place.

Shortages in semiconductors and other vital components, including capacitors and flash memory, have been well-documented, impacting not only networking equipment, but also consumer electronics, automobiles, and other industrial equipment. Meanwhile, demand for fiber cables, conduit, and other ODN infrastructure has pushed lead times for these components to anywhere from 12-18 months. Lead times for OLTs and other active equipment used in FTTH deployments have remained fairly stable despite the disruptions, but have been sneaking up recently as demand has increased, particularly from larger operators who have major strategic initiatives in place to accelerate their home passings.

 

Delays will open the doors for wider usage of alternative technologies, including fixed wireless and satellite

Delays and higher costs to ship finished goods from overseas could also slow FTTH network rollouts, though the bigger challenge there will be managing the higher costs to ship goods.

Finally, the biggest impediment to getting fiber networks rolled out within a realistic time frame is likely to be a lack of trained workers in the fields of professional services and installation. Nearly all job functions are likely to be short-handed, given the potential demand coming from subsidized projects: Network engineers, surveyors, fiber technicians, all the way to individuals handling permitting and right of way applications both for operators and individual municipalities. Many of these functions require specialized training through community colleges and trade schools. In other words, the workers can’t be added fast enough to be able to match the demand expected from ongoing and potential fiber projects.

The net result is that fiber broadband deployments in rural and underserved communities are likely going to take considerably longer to complete, potentially pushing the goal of connectivity out past 10 years. Potential—and arguably necessary—changes to how the FCC and individual states map and classify broadband services will also slow down the process by likely increasing the total number of homes classified as unserved or underserved. For example, individual states have completed their own mapping exercises and found unserved and underserved totals being 2x-3x what the FCC has reported via its own maps.

These exercises lead us to our conclusion that total unserved and underserved homes in the US are likely closer to 40M. Even this number could be conservative. But until the FCC or states conduct a revised process of mapping, the totals will likely be less than that 40M estimate.

In upcoming blogs, I will explore in more detail the implications not only for fiber broadband deployments and equipment providers, but also for fixed wireless providers and emerging satellite broadband players, such as Starlink. With so much money on the table, along with a commitment across the board to finally bridge the digital divide, driven largely by the recent pandemic, I expect there to be an ongoing push-and-pull between legislators, network operators, and the industry lobbying groups representing them (e.g. WISPA, Fiber Broadband Association) to either expedite rollouts in the name of achieving goals faster or slowing rollouts to make sure they are done right the first time. There has already been considerable debate regarding the inclusion of fixed wireless solutions and whether they will truly be able to provide the gigabit speeds and services legislators are requesting or whether those speeds take a backseat to the primary goal of getting everyone connected.

[wp_tech_share]

In the world of communications and networking, the year 2020 marked a turning point for communications service providers, as well as consumers and subscribers around the globe. 2020 was the year that fiber cemented itself as the preferred access technology of the future for a majority of operators. The catalyst for this strategic shift was the impact COVID-19 had on residential broadband network utilization rates, along with the dramatic increase in premium broadband subscribers around the world.

According to many operators around the world with cable, DSL, and fiber broadband networks, upstream peak traffic growth throughout 2020 increased over 50%, while downstream peak traffic growth increased 30%. In the early days of lockdown, operators reported staggering 125% increases in peak upstream and downstream growth, which ultimately leveled off as software adjustments were made to network platforms, and new capacity in the form of line cards and upgraded CPE was added.

Although the world is gradually returning to normal, with teleworkers moving slowly back into their offices, there is simply no turning back now for broadband subscribers who either upgraded or switched to FTTH services. The near-symmetric speeds pushing 1Gbps and beyond, the resulting elimination of buffering for streaming video, and the near-flawless performance of online and VR gaming, and video conference calls are more than enough to warrant holding on to their premium broadband.

As a result, we expect global FTTH subscribers to continue to expand on a global basis, with the highest growth (by percentage) to come from Europe, North America, and CALA, where fiber penetration rates remain below 50% for most countries in each region (Figure 1).

Related blog: 5-Year Forecast—Broadband Spending to Remain Strong Through 2025

 

Fiber expansion will rely on a wide range of technologies

The fiber expansion in 2020, which saw total spending on PON equipment jump 8%, involved multiple technologies—from 1G EPON and 2.5G GPON to XG-PON and XGS-PON. While the clear trend among operators is to expand their fiber services using 10G technologies, there are still hundreds of operators who will continue to rely on 2.5G GPON as the workhorse for their fiber networks for years to come.

The diversity in PON technology choices specifically reflects the fact that fiber networks are no longer being considered for just residential applications. Instead, the same fiber networks that deliver residential services are now also being used for business and wholesale access. Additionally, the global expansion of 5G networks and continued small cell densification are opening up opportunities for 10G technologies to be used in both mid-haul and backhaul applications.

For operators considering a fiber deployment or network expansion, the key decision points used to be “how many homes can I pass?” and “what percentage of those homes will become subscribers?” While those remain critical metrics, the ROI equation for fiber networks has become increasingly easier given that the additional revenue potential from wholesale and business services, in addition to providing mid-haul and backhaul functions for a growing network of 5G small cells. The application and technology roadmap for PON networks and technologies has become much clearer, making it much easier for operators to justify the initial construction and buildout costs of their fiber networks.

Adding more incentive for operators to expand their PON networks has been the growing commercial availability of combo cards and optics, which can support 2.5G GPON, XG-PON, or XGS-PON from the same platform. These multi-technology options allow operators with existing PON deployments to begin the process of upgrading their networks to 10G on a gradual basis, without having to do a flash cut of entire service areas. Instead, operators can continue to deliver 2.5G GPON services to the bulk of their residential subscribers, while allocating XGS-PON wavelengths to business or high-end residential subscribers. Operators can then spread out the costs of more expensive 10G ONTs across a longer period of time.

More importantly, combo cards and optics don’t force operators to change any aspects of their existing ODN (Optical Distribution Network), allowing them to continue amortizing those initial construction and equipment costs over a longer period of time. From feeder and distribution cables to ducts, poles, and splitters, the co-existence of multiple PON technologies and re-use of the existing ODN is critical for operators around the world.

Related video: Cable and FTTH Subscriber Growth Pushes Q4 Broadband Access Equipment Spend Up 3 Percent Y/Y

 

Ensuring the fiber experience in the home, not just to the home

With more operators spending the time and money to roll out or expand their fiber networks and with competitive threats from other broadband providers not slowing down, operators are increasingly pushing fiber inside homes, not just to the front door. In cases where it is not feasible to run fiber throughout the home, operators are moving quickly to provide residential gateways that support WiFi 6 speeds and services and complementing those with additional mesh satellites when homes have WiFi dead spots.

By extending service into homes, operators can now remotely monitor the performance of in-home WiFi networks while also offering subscribers additional services, such as parental controls, bandwidth-on-demand, as well as bandwidth boosts by device or by application. As more IoT devices and sensors are introduced in homes, the combination of gateway software platforms, such as OpenWRT, prpl, EasyMesh, and RDK-B plus WiFi 6 gives operators an advanced set of features and options to package for their subscribers so that they can better manage and monitor the performance of all these new IoT devices.

Specifically in the case of providing bandwidth-on-demand services, fiber networks provide the most flexibility for scaling upstream and downstream bandwidth based on individual subscriber requests. Cable networks are limited in how much upstream bandwidth can be allocated, unless they move to a full-duplex architecture, which is both costly and time-consuming.

In a growing number of cases, operators are eliminating any concerns they might have about in-home wiring and WiFi performance by offering to extend fiber directly to multiple locations within the home. China Telecom and China Mobile are expanding their in-home ONT projects to ensure near-gigabit speeds to all devices in the home. Though not all fiber providers around the world will follow these operators’ lead due to higher labor costs, there are more operators considering the move as it truly future-proofs their networks and services and further cements their relationship with subscribers.

 

Sharing best practices to move the industry forward

Over the last decade, operators have been benefitting from the lessons they’ve learned during their own fiber deployments and sharing those lessons with the industry. From securing right-of-way and building access to micro-trenching techniques to the optimal deployment of ODN infrastructure and components, the cost and complexity of deploying fiber networks have been significantly reduced. The sharing of best practices among operators has resulted in the identification of consistent problem areas that can add unnecessary costs or delays to a fiber network rollout. For example, a major portion of the time and cost of last-drop fiber deployments is around digging trenches and burying new ducts within those trenches. Over time, operators have learned to identify ducts or trenches that are already in place so they can re-use that existing infrastructure rather than starting from scratch. This situation is becoming more common as multiple operators roll out fiber to new small cell locations, business parks, or extend feeder fibers into neighborhoods for cable node splits.

Additionally, reducing labor costs and rollout delays by using pre-connectorized fiber is an industry best practice that has evolved over time. Using pre-connectorized fiber eliminates the need for on-site splicing and also expands the labor pool of technicians who can complete a subscriber connection.

As an increasing number of operators deploy fiber in different countries with various topography, regulatory restrictions, and labor pools, the industry as a whole will benefit, further providing operators with more knowledge and more incentive to take the plunge and deploy their own fiber networks.

 

Fiber Everywhere

The global trend toward the deployment and expansion of fiber networks has never been clearer. What began in a handful of countries just a decade ago has proliferated to hundreds of countries and thousands of network operators globally. Fueled by new applications, new subscriber requirements, and new competition, operators clearly see their networks of today and tomorrow relying on fiber. The road map for fiber technologies and use cases continues to expand, along with the knowledge and implementation of best practices. Those two trends alone will continue to provide operators with strong incentives to deploy fiber and future-proof their networks for decades to come.

Finally, network equipment vendors are expanding their product and service portfolios to become more comprehensive partners to fiber providers. From in-home networking equipment to ODN infrastructure and central office equipment, these suppliers are adding network design and consulting capabilities to help their service provider customers reduce the cost of deploying fiber networks and speed their time to market.

Related blog: Predictions 2021– Broadband Access and Home Networking Market