[wp_tech_share]
Huawei recently held its annual MBBF Forum. Although the capacity and revenue-related challenges are typically part of the main agenda, energy efficiency and green energy were also front and center at this year’s event. Below we will share five RAN related observations including
1) Healthy customer participation
2) Connectivity is a profitable business
3) Plenty of room left with the sub 6 GHz spectrum
4) FWA is accelerating
5) Private 5G wireless revenues remain small but activity is on the rise

Healthy Customer Participation

The MBBF is a customer-driven event. With operators in countries that comprise nearly two-thirds of global GDP reassessing their Huawei RAN reliance, one could assume that operator participation would be significantly impacted. Though we are not keeping track of all the carriers that speak on a yearly basis at this event, our first impression was that operator participation remained healthy, including speakers from China Telecom, China Unicom, Dialog, DNA, Du, Entel, Elisa, Etisalat, Globe Telecom, Hellenic Telecommunications, Orange, Sunrise, Vodafone, Zain, and Zong.

 

Connectivity is Not Boring

While there is no shortage of operators that have tried to move beyond connectivity into other areas to improve investor returns, operators are also slowly coming to terms with the fact that connectivity is a profitable business with upside potential.

More importantly, this new post-pandemic normal combined with the improved revenue growth trends during 1H21 and the fact that the ability to differentiate these connectivity offerings will only improve as the requirements evolve and connectivity spreads to verticals form the basis for the renewed connectivity enthusiasm. Or to quote Etisalat – it is not always about beyond connectivity, maybe it is time to focus more on smart connectivity.

It is worth noting that the projected revenue growth between 2020 and 2021 is partly reflecting lighter comparisons and changing behaviors as a result of the response to the pandemic. Some of the behavioral changes will be short-lived, however, the uncertainty surrounding non-transitory behavioral adjustments is contributing to the renewed optimism.

 

The Importance of the Sub-6 GHz Spectrum

Data traffic continues to grow at an unabated pace. Huawei now estimates that the average user will consume 600 GB per month by 2030, implying total monthly mobile data consumption will approach 5 ZB per month. Regardless of whether we are talking 1 or 5 ZBs, the spectrum is a scarce resource. We simply need to optimize the spectral efficiencies with all the various 5G deployments to dimension the network for another potential 20x to 100x of growth between 2020 and 2030. And ideally, this would be done without growing the carbon footprint.

Dell'oro Group Huawei MBBF 2021

Balancing investments and the experience for all of the various 5G networks while keeping in mind that marketing is typically done on speed but the network is dimensioned for capacity will remain a challenge for the operators. The industry appears to be fairly aligned when it comes to selecting the antenna & transceiver configurations for upper mid-band Massive MIMO and sub-1 GHz deployments, however, there is still some uncertainty with the 2 GHz NR roadmap.

Huawei envisions the 8T8R radios can play an important role for the 2 GHz FDD bands. With gains of 2.3-2.8x relative to the 2T2R LTE baseline, 8T8R systems will make up some of the losses with DSS and provide a solid base layer foundation.

The challenges with FDD-based Massive MIMO in the 2 GHz spectrum are well known. In addition to the relative efficiency gap between FDD and TDD as a result of leveraging channel reciprocity in TDD systems, FDD-based solutions typically also operate in a lower spectrum band, increasing the physical size of the antennas. Still, Huawei continued to signal some optimism about the FDD Massive MIMO opportunity. And perhaps more importantly, this is not just a vision anymore – Huawei has already deployed more than 10 K FDD based Massive MIMO AAUs. Granted shipments remain small relative to TDD Massive MIMO. Still, the ascent is steeper than expected.

Huawei did not spend a lot of time talking about the 6 GHz opportunity during this event, though it was discussed extensively at the HAS 2021 event. Some of the European operators did reiterate that the 6 GHz (upper band) will play an important part with future 5G deployments, validating the message we have communicated for some time, namely that 6 GHz Massive MIMO deployments could result in another major 5G deployment cycle.

Not surprisingly, external challenges are not impacting Huawei’s ability to innovate and introduce new solutions/enhancements to its sub 6 GHz portfolio. This is not the right setting to list all of the enhancements but a few stood out. During the event, Huawei announced enhancements to its 8T8R portfolio leveraging its new “Hertz” antenna platform, resulting in improved capacity, simplified form factors, and high energy efficiency.

Huawei’s Massive MIMO MetaAAU expands the number of antenna arrays from 192 to 384, resulting in roughly 3 dB of additional coverage with the 64T64R configuration.

Also, Huawei announced a 32T32R Massive MIMO AAU (240W) weighing only 10 kg, or roughly 2 kg less than Ericsson’s recently announced 12 kg Massive MIMO radio.

 

FWA is Accelerating

With around ~500 operators globally offering LTE or 5G NR FWA and around 65 of these using 5G (GSMA), FWA was an important topic at the event. Three points that stood out was related to prices, the 5G ramp, and the long-term roadmap.

First, it was somewhat surprising to see how quickly 5G CPE prices are declining – Huawei expects 5G CPEs will approach the sub $150 range by 2022 (Tozed Kangwei is targeting $100 5G CPEs in 2022).

Next, 5G FWA connections are firming up. Huawei estimates the 5G FWA installed base is around 2 M, excluding North America, reflecting healthy activity in the MEA region.

With FWA adoption improving, it is important to keep in mind that the technology will make sense in some cases but it still just one piece of the larger broadband toolkit. Operators are still trying to figure out how to best balance the capacity requirements and the overall profitability over the near-term and long-term for the various FWA segments including the underserved, relatively served, and well-served markets.

One of the key questions with FWA is not only about the near-term potential, but also the role the technology will play overtime as fiber footprints improve.

Dialog has relied heavily on FWA technologies to improve broadband penetration across Sri Lanka. But what was really interesting was that this operator see FWA as a stepping stone and an important part of the planning for more accurate FTTX deployments – 5G FWA will help them identify broadband sites and over time improve the utilization of FTTx.

For more info about the FWA CPE LTE, 5G mmWave, and 5G Sub-6GHz markets, please see our Broadband Access Report. And for more information about how FWA is boosting the RAN market, please click here to read the article.

 

Private Wireless Activity is Improving

The broader trends remain fairly unchanged. MBB/FWA continues to drive the lion’s share of the overall 5G capex while private 5G investments remain small and the more upbeat near-term and long-term projections still hold, underpinned by five core drivers: (1) more countries are exploring how to allocate spectrum for private applications, (2) advances in technology are improving the business case by driving down the price, introducing more flexibility, as well as simplifying the way that private wireless is installed, operated, and managed, (3) enterprise awareness about the benefits of using cellular is improving, (4) public cloud providers are more actively seeking to partner with communication service providers (CSPs), and (5) new use cases are emerging that require cellular quality of service (QoS).

And although private 5G investments remain negligible, Huawei’s MBBF event bolstered the narrative that the industry is moving in the right direction. The IoT ecosystem is improving, operators are working with partners to develop 5G use cases, enterprises are interested to explore how 5G could help them, and private 5G activity is on the rise using both dedicated base stations and slices on the public mobile network – Huawei estimates there are now around 10k 5G B2B projects around the world, with roughly half of these located in China.

Vodafone, one of the leading IoT connectivity providers with around ~130 M connections, spent a good amount of time discussing its private 5G/IoT progress across a broad set of use cases including power networks, refineries, vehicle production, and real time communication between vehicles, to name a few.

In short, there is no shortage of opportunities in the mobile infrastructure segment. And as always, the event was a good reminder that the RAN field remains competitive. Open RAN provides an improved entry point. At the same time, this architecture does not change the underlying supply and demand challenges and the asymmetry between data traffic and revenue growth. At the end of the day, operators need to optimize TCO/energy consumption/spectral efficiency and work with suppliers that can help them tackle new opportunities while also supporting existing legacy networks.

[wp_tech_share]
We’ve just wrapped up the 1H21 reporting period for Dell’Oro Group’s enterprise network equipment programs, which include campus switches, enterprise data center switches, enterprise routers, network security, and Wireless LAN. Enterprises include businesses of all sizes as well as government, education, and research entities. The equipment tracked in these programs can be used for wired or wireless data communication in private and secure networks.

 

1H21 Market Performance

The overall Enterprise Network Equipment market was up 10% year-over-year (Y/Y) in 1H21. The growth was linear across the first and second quarters (up 10% and 11% Y/Y, respectively). Furthermore, the overall Enterprise Network Equipment market was able to exceed its 2019 pre-pandemic revenue level for the first half of the year.

 

The 1H21 growth was broad-based across all segments. Campus switching contributed about 30% of the increase in spending in the first half, followed by Network Security and WLAN at about 25%, each. Even the physical appliances segment of the Network Security market was able to turn the corner and go back to growth in 1H21. This broad-based recovery is encouraging given that last year was characterized by a significant decline in spending on hardware products, specifically campus switches, data center switches, access routers, physical firewalls, and Wireless Access Points (APs). In the meantime, 2020 spending on software and subscription-based products: SD-WAN and virtual and SaaS security, and the licenses portion of the WLAN segment, increased.

We attribute the 1H21 recovery to the following:

  • Improving macro-economic conditions and business confidence
  • Strong government stimulus around the world
  • Pent-up demand from verticals that have been hit hard by the pandemic such as the hospitality and retail sectors
  • Network upgrade activities in preparation for the back-to-work event planned for the second half of the year.

Despite the robust revenue growth recorded in the market in 1H21, major vendors reported that revenue would have been even stronger if they had not experienced supply constraints. In other words, demand outpaced supply. Although the gap between supply and demand impacted the different sectors within enterprise networking, it appears that the issues were more acute on the higher volume WLAN APs, where unit shipments declined Y/Y and Q/Q for some US-based manufacturers during a seasonally strong quarter.

 

1H21 Vendor Landscape

The analysis contained in these reports suggests the ranking and share of the top 10 vendors remain relatively stable, with the top two vendors, Cisco and Huawei, comprising nearly 50% of the Enterprise Network Equipment market in 1H21. We would like to note, however, that Cisco lost some shares between 1H20 and 1H21, while Palo Alto Networks, H3C and Arista, gained one point of revenue share, each.

 

2021 Market Outlook

Even with the unusual uncertainty surrounding the economy, the supply chains, and the pandemic, the Dell’Oro analyst team remains optimistic about the second half – the overall enterprise network equipment market is projected to advance 5% to 10% for the full-year 2021. However, we are expecting a slowdown in the second half, compared to the first half as supply constraints seem to be worsening which may hinder market performance.

 

Dell’Oro Group Enterprise Network Equipment research programs consist of the following: Campus switchesEnterprise Data Center SwitchesSD-WAN & Enterprise RoutersNetwork Security, and Wireless LAN.

[wp_tech_share]

We just wrapped up the 1H21 reporting period for all the Telecommunications Infrastructure programs covered at Dell’Oro Group, including Broadband Access, Microwave & Optical Transport, Mobile Core & Radio Access Network (RAN), SP Router & Switch. The data contained in these reports suggest that the positive trends that characterized the broader telecom equipment market extended into the second quarter, even if the pace of the growth slowed somewhat between the first and the second quarter.

1H21 Total Telecom Equipment Market Chart - DellOro

Preliminary estimates suggest the overall telecom equipment market advanced 10% year-over-year (Y/Y) during 1H21 and 5% Y/Y in the quarter, down from 16% Y/Y in the first quarter. The growth in the first half was primarily driven by strong demand for both wireless and wireline equipment, lighter comparisons, and the weaker US Dollar (USD). Helping to explain the Y/Y growth deceleration between 1Q and 2Q is slower growth in China.

The analysis contained in these reports suggests the collective global share of the leading suppliers remained relatively stable between 2020 and 1H21, with the top seven vendors comprising around ~81% of the total market. Within the mix, we estimate Huawei and Nokia lost some ground between 2020 and 1H21 while Cisco, Ericson, Samsung, and ZTE recorded minor share gains over the same period.

Additional key takeaways from the 1H21 reporting period include:

  • Following the Y/Y decline in 1Q20, our analysis suggests the overall telecom equipment market recorded a fifth consecutive quarter of growth in the second quarter.
  • The improved market sentiment in the first half was relatively broad-based, underpinned by single-digit growth in SP Routers and double-digit advancements in Broadband Access, Microwave Transport, Mobile Core Networks, and RAN.
  • Aggregate 2Q21 revenues were in line with expectations, however, within the programs both Broadband Access and Microwave Transport were surprised on the upside while Optical Transport and SP Routers came in below expectations.
  • From a regional perspective, China underperformed in the quarter, impacting the demand for both wireless and wireline-related infrastructure.
  • Ongoing efforts by the US government to curb the rise of Huawei are starting to show in the numbers outside of China, not just for RAN but in other areas as well.
  • Though Huawei is not able to procure custom ASICs for its telecom products, the supplier is assuring the analyst community its current inventory levels is not a concern over the near term for its infrastructure business.
  • The majority of the vendors have through proactive measures been able to navigate the ongoing supply chain shortages and minimize the infrastructure impact. At the same time, the supply constraints appear more pronounced with higher volume residential and enterprise products including CPE and WLAN endpoints.
  • Even with the unusual uncertainty surrounding the economy, the supply chains, and the pandemic, the Dell’Oro analyst team remains optimistic about the second half – the overall telecom equipment market is projected to advance 5% to 10% for the full-year 2021, unchanged from last quarter.

 Dell’Oro Group telecommunication infrastructure research programs consist of the following: Broadband Access, Microwave Transmission & Mobile Backhaul, Mobile Core Networks, Mobile Radio Access Network, Optical Transport, and Service Provider (SP) Router & Switch.

[wp_tech_share]

Power generation is perhaps not the shiny object that comes to mind when suppliers and operators think about potential 5G game-changers. After all, Nokia estimates power generation accounts for approximately 0.4 percent of the global industrial site opportunity. At the same time, LTE/5G NR activity for power utility applications using both public and local spectrum are on the rise, reflecting a confluence of factors including the benefits and flexibility with cellular technology, the improved availability of local spectrum, and the renewed sense of urgency to modernize the grid to address more extreme weather variations. In this blog, we will review the cellular power utility opportunity, the benefits of using LTE/5G, typical performance requirements for the electric power industry, and review progress with some of the early cellular electric utility adopters.

The power generation market is small relative to the manufacturing opportunity, however it still sizeable. According to the EIA, there are around 60 K to 65 K power plants globally. China is home to four of the world’s ten largest power plants. In the US, the electric systems consist of around 7 K power plants and 360 K miles of transmission lines (US Department of Energy).

Perhaps more importantly, the push to manage capacity growth while embracing energy efficiency is spurring countries to modernize their power grids with various smart grid capabilities, including improved connectivity solutions.

How can cellular technologies help electric utilities? The electricity supply chain can be conceptualized into three high-level functions: generation, transmission, and distribution. One of the more compelling aspects of the power industry is that secure, reliable, flexible high-performance connectivity can make a significant difference in various parts of the electricity supply chain and deliver material savings, both in terms of revenue and lives – there is typically not much effort required to inform this sector about the benefits with LTE and 5G vs. WiFi or other proprietary protocols.

Also, the cost, security, and roadmap benefits with the 3GPP standards are well understood. While the macro mobile network will continue to play an important role with 4G/5G power utility networks, the availability of a new local spectrum will also enable the utilities to improve the coverage in areas with limited macro coverage.

From a service perspective, early 5G adopters are looking into four types of applications including:

  • Production control area
  • Production non-control area
  • Information management
  • Local campus coverage

According to the 5G Deterministic Networking Alliance (5GDNA) and China Southern Power Grid (CSPG), 5G slices can help with the production control area to monitor power systems in real-time and address differential protection on power distribution networks, intelligent distributed FA, precise load control, and distributed energy control.

The current use of optical transport for the centralized connection is not always ideal from a capex perspective. Wireless connectivity technologies should be able to deliver an improved cost structure. And according to 5G DNA, 5G is preferred over LTE as the required network latency should be 15 ms or better to provide enough margin to ensure the phase delta does not result in asynchronous monitoring. Also, this type of latency requires the UPFs to be deployed at the edge sites.

5G is also expected to play an increasingly important role in information management. Utilities still rely heavily on manual inspections, which tend to be inefficient, time-consuming, and in some cases dangerous. LTE and 5G can help to transform these services and provide the right foundation to digitize much of the inspection process including the inspection of substations and transmission lines. Using videos, AR, robots, site cameras – thousands of devices can be checked in real-time.

Historically information management has typically been addressed using 3G/4G, WiFi, and fixed technologies such as optical fiber. But this combination is not always perfect. In addition to the UL limitations, there are also security risks that are better managed with 5G and Multi-Access Edge Computing.

Initial findings with some of the early adopters support the premise that 5G can improve efficiency. CSPG, which covers roughly a quarter billion people in China, has started to incorporate 5G into its connectivity roadmap. Working with China Mobile and Huawei, CSPG is using two separate 5G slices for production control and information management.

Preliminary findings suggest precise fault locating and fast fault isolation for power distribution network differential protections reduces the fault location time from a few second to a few milliseconds.

According to CSPG, 5G enabled them to install new monitoring systems and ultimately reduce the inspection duration for 1330 items from 3 days to 1 hour.

Similarly, the inspection duration for 500 kV power transmission lines has been reduced from 10 days to 2 hours.

In the US, power utilities are exploring how they can leverage the capacity upside with CBRS and the coverage benefits with a low-band spectrum to focus on grid modernization and wildfire prevention. New York Power Authority (NYPA), the largest state public power organization in the US, is exploring how LTE can provide drones with the connectivity needed to manage critical field operations and ultimately reduce the reliance on manual inspections.

In other words, the LTE/5G NR power utility market is nascent. However, the benefits of cellular technologies are clear and the business case is straightforward. And more importantly, we don’t have to wait to verify this narrative – utilities across the world are already exploring and utilizing LTE and 5G NR to modernize various parts of the electricity supply chain. So even if the TAM is somewhat limited relative to other industrial opportunities, the time is right to start getting excited about the incremental value LTE and 5G can deliver to the power utility vertical.

[wp_tech_share]

 

The global demand for broadband service has resulted in an acceleration of interest among fixed and mobile operators alike to either expand their existing LTE or point-to-multipoint fixed wireless offerings or roll out early 5G services to a growing base of current and potential subscribers. In both mature and emerging markets, there has been a tremendous increase in the number of RFPs for equipment and software to support large-scale 5G fixed wireless service deployments. Clearly, service providers are looking to strike while the iron is hot, securing subscribers who need broadband now, while also taking advantage of growing government subsidization of broadband service rollouts.

The vendor ecosystem supporting 5G fixed wireless has naturally increased, particularly in the area of dedicated CPE. According to the GSA (Global mobile Suppliers Association), there are currently over 130 FWA CPE devices (both indoor and outdoor) that have been announced by a growing list of vendors, which now numbers above 50. Over 50 of these dedicated CPE are now commercially available, which is up from 15 commercially-available units just one year ago. By the end of 2021, we expect that the number of commercially-available devices will exceed 100 and will double in 2022. The number of vendors producing or planning to produce 5G FWA CPE already exceeds the number of suppliers of 4G FWA CPE.

 

Dell'Oro: 5G FWA Vendors and CPE Units

 

The increase in available units, which corresponds with the perceived addressable market of 5G network deployments and subscriber uptake, combined with the rapid uptake of 5G-capable smartphones will help to push the cost of both indoor and outdoor 5G FWA units down to levels that satisfy the business case requirements of operators globally. In particular, operators in emerging markets where ARPU levels are typically low, cost-reduced CPE are an absolutely critical requirement to ensuring a faster ROI.

The larger the addressable market, the more willing component suppliers will be to forward-price to capture a larger share of that growing market. The resulting price reductions in components begets wider availability of finished CPE. It becomes an iterative cycle that benefits the entire supply chain and the network operators as end purchasers.

 

Quick Ramp of 5G FWA Devices Expected

At the end of 2020, we estimate that there are nearly 60M fixed wireless subscribers globally. A large percentage of these subscribers use 4G LTE networks, though there are also subscribers using 3G networks, proprietary point-to-multipoint services, as well as some using early 5G technologies, including sub-6Ghz and millimeter wave. We estimate that the 5G subscribers are around 1 million currently. However, we expect that those subscriber numbers are set to double in 2021, as operators such as T-Mobile (USA), AT&T, Verizon, Bell Canada, Saudi Telecom, Rain (South Africa), Swisscom, Deutsche Telekom, Optus, and others introduce or expand 5G FWA services this year.

With those operator commitments already in place, we estimate that the total number of 5G FWA devices shipping to operators this year will easily exceed 3 million units and could push 4 million units. The vast majority of these units will be to support sub-6Ghz service offerings, though we also expect to see millimeter wave units, as some operators use a combination of those technologies to provide both extensive coverage and fiber-like speeds in areas where the competition from fixed broadband providers is more intense. Overall, however, we expect volumes first from sub-6GHz units this year and into next year, followed by increasing volumes of millimeter wave units beginning in the latter part of 2022 and into 2023.

We also anticipate that the vast majority of 5G FWA deployments will rely on indoor gateways that combine a 5G modem with a WiFi 6 access point for signal distribution within the home. Many of these gateways will also be mesh-capable and will be paired with satellite units to blanket homes with WiFi coverage and to eliminate dead spots within the home.

There will be situations where outdoor units will be required, particularly in the case of millimeter wave deployments which require line of sight because of the high-frequency ranges being used. But even in the case of sub-6Ghz 5G FWA deployments, outdoor units will be required when homes or apartments have very thick-paned windows or are located in LEED (Leadership in Energy and Environmental Design) buildings.

With this growing clarity around deployment models and device types, we expect that the costs of 5G FWA CPE will decline throughout this year and next, providing a catalyst for much larger, global deployments of the service through 2022 and beyond. We believe that the average cost for an indoor 5G FWA CPE supporting sub-6GHz frequency bands will decline from around $350 in 2020 to around $100 by the end of 2023 (Figure 2).

 

 

5G chipsets will see the biggest price declines, helped in large part by increasing volumes of 5G smartphones, but also by a growing ecosystem of 5G modems, gateways, tablets, cars, and other products reliant on 5G networks for WAN connectivity. Currently, 5G SoCs are roughly 4x the cost of 4G SoCs. But we have seen this played out before in the early stages of 4G network and device rollouts when the cost of chips dropped quickly as device volumes increased.

Similarly, the cost of WiFi 6 chips remains about 15-20% higher than WiFi 5 units. While WiFi 6 will be the primary technology for mature, highly competitive markets, WiFi 5 will remain an important option for very price-sensitive markets, particularly those in developing countries and in rural markets where competition comes from lower-cost services. But as enterprise and higher-end residential gateways are built with WiFi 6 technology, the cost of those chips will decline significantly over the next couple of years.

 

 

Beyond these two major components, manufacturing costs will also decline as equipment and contract manufacturers increase volumes based on initial board and hardware designs. FWA gateway designs, like higher-end residential WiFi access point designs, are well-understood at this point. However, with any new product spin, there is a learning curve for the manufacturers. Though the cost of producing the first few thousand units is high, the costs quickly decrease as the manufacturing process becomes clearly defined and as new iterations of the devices incorporate lower-cost components.

There are two critical components for the steady reduction in cost for 5G FWA CPE: Increased orders and volumes from service providers, along with the cooperation among providers of 4G CPE devices and 5G units to understand how to bring down the costs as quickly as possible. This cooperation will be necessary to stimulate interest among service providers, who can then drive the volumes necessary to improve the overall economics of delivering 5G fixed wireless services.

 

5G FWA Will Build on 4G Deployments

Though the deployment of FWA services using 4G LTE networks has been moderately successful around the world, 5G will dramatically boost the addressable market of subscribers, as well as the service’s ability to reasonably compete with most fixed broadband technologies. 5G can comfortably deliver downstream speeds that compare favorably with VDSL and DOCSIS 3.0 services while easily beating previous generations of both fixed technologies. More importantly, C-band and millimeter wave technologies promise to be comparable with DOCSIS 3.1 and fiber services, thereby expanding the addressable market of subscribers even further.

Mobile operators around the world who have previously been unable to compete with fixed broadband providers, as well as fixed broadband providers looking to expand the reach of their services more quickly, are all enthusiastic about the opportunity in front of them with FWA. Their growing commitment to the service, as well as a rapidly expanding vendor ecosystem for customer devices, will help to quickly reduce the cost of those devices, thereby ensuring a faster ROI for service providers and a willingness to expand their reach even further.